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A NEW METHOD OF SOLVING HEAT-CONDUCTION PROBLEMS FOR
BODIES OF REVOLUTION

V. I. Makhovikov

(Khar 'kov)
ABSTRACT
A method is proposed for solving problems of /151%

stationary heat conduction for bodies of revolutionm.
When the boundary conditions on the surface of the
body are satisfied, this method makes it possible to
apply the well-studied procedures for solving planar
problems for harmonic functions. The axisymmetric
problem is examined in detail.

Let us assume that the body V is obtained when the planar region D,
which is bounded by the contour K, is revolved with respect to the z-axis.
We shall employ the cylindrical coordinate system p, 2z, & (Ref. 1, 2), and
then the equation of the countour X is a function of the variables p, 3.
The essential feature of the method which is advanced consists of the fact
that the body of revolution is assumed to be made of a completely nonuniform
material, whose thermal conductivity coefficient A is a differentiable func-
tion of the variables p, 3, 8. The imposition of a definite condition on
this function results in the fact that the thermal conductivity equation is
considerably simplified, which makes it possible to represent the temperature
in terms of harmonic functions of the variables p, z. When the boundary con-—
ditions on the body surface are fulfilled, this enables us to apply the well-
known, effective methods of solving planar problems for a wide class of regions
D. 1In spite of the limitation imposed on the function A, there is a compara-
tively large amount of freedom for variation in this function. Within a
definite range of changes in the variables p, z, ¢, this makes it possible
to have A approximate a given expression, particularly a constant value, and
to obtain in this way the effective solution of the thermal conductivity prob-
lem for a body made of a material which is close to being uniform.

When there is a stationary thermal regime and when there are no heat
sources in the body, the equation of thermal conductivity in a nonuniform
medium may be written as follows (Ref. 1, 2)
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We shall try to determine the temperature in the following form

T=-——0,
w

where w, ® are the differentiable functions of the variables p,
Substituting (3) in (1), we may transform equation (1) into the

form
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we may transform expressions (4), (5) to the following form
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Let us examine the solution of equation (7) for the case when the tem-

perature does not depend on ¢ .

Taking expression (2) into account, as well

as the fact that the operator A does not depend on J here, it is advantageous

to require g(w) = 0.

We then obtain the equations which the functions ¢, w
must satisfy from (7), (8):
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The general solution of equation (9) may be written in the form ¢ = ¢(&) +
+ ¢(&) (& = p + 22), where ¢(&) is the function which is analytical in the

region D; ¢(&) is the complex conjugate functionm.

Employing formula (3), we
obtain the following for the temperature



i
T=—@+ @] (11)

Thus, under the conditions (6), (10) the temperature (11) satisfies the
equation (1).

Assuming that (10) is a harmonic function of w, let us determine
whether it is possible to have the following expression

w2/ (12)

approximate the given value of A. For the general case, this problem requires
special study, and in order to have expression (12) approximate the given ex-
pression A it is possible to employ the well-known approximation methods of
functions by series of functions which are previously known (Ref. 3 - 5). We
shall present examples below, where it is shown that even the simplest func-
tions of w exist, by means of which it is possible to have expression (12)
approximate a constant value, with an accuracy which is sufficient for practi-
cal applications within certain ranges of changes in the variables p, 2z -—- i.e.,
it is possible to obtain the approximate equality

wZ

—— = Ap == const. (13)
0

Example 1. We have the function

w = Ya(p+ w), (14)

where a, u are the arbitrary constants satisfying equation (10). According to
formula (6), we obtain

a
, Lou)z = A(p).
A———;(P ) (0) (15)

An analysis of the function (15) shows that its derivative with respect
to p at the point p = u equals zero, and that at this point the function (15)
has a minimum. Let us require

(16)
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where § is a sufficiently small positive quantity. In order to fulfill condi-
tion (16), it is sufficient to determine the constants a, p;, p2 in such a way
that

Setting /153
a = Jap1 (14 8) (p1+ M) (19)

and substituting (15), with allowance for (19), in (18), we satisfy equation
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Let us give the values of p;, po in the case of § = 0.05 and 0.1, i.e.,
for cases when the maximum deviation of A(p) from Ay = const is 5 and 10%,
respectively, within the range (17)

8 = 0,05, p: = 0,5285 i, ps = 3,58 01; 8 = 0,4, 0 = 0,4024 u, pz = 6,18 ps. (21

Since real bodies are not absolutely uniform in the majority of cases,
we may employ formulas (11) and (14) to study the temperature of the bodies,
which are customarily assumed to be uniform. When real bodies are calculated
for §, norms must be established which stipulate the limits (17) and (20),
where formula (15) is applicable. In particular, if 6§ = 0.05 or 6§ = 0.1 may
be assumed, we may employ formulas (11) and (14) to study bodies of revolu-
tion, whose region D lies within the limits (21) and -» < 2 < », where p is
an arbitrary constant, u > O.

Example 2. If we change to polar coordinates in the p, 2 plane,

t—re, O<r<w, —a/2>%>a/2 (22)
then the following form
1 - —_ P — '\P ’lp
w = -570[(1 b ia)]/'é +(1 + la)]/?;] = ]/cr ((‘,057—(&5111—2-‘) (23)
may be assigned to the solution of (10).
Here ¢, a are real constants. "According to (6), we have
2
A= Cssw(\cosfpz-fasin_‘§> = A (¥). (24)

The function A(y) at the point ¢ = y, which may be determined by the
following equation
tg Po — tg (Po/2)
- 1—tg otz (Yo/2) (25)

has a minimum. Therefore, we may require

(26)
M) = Ao[d + M2 ()], T (p) | < 6,

where B Y B < o < b, (27)

and 8 is a sufficiently small, positive quantity. In order that the condi-
tions may be fulfilled, the constants ¢, ¥}, Vo must be determined so that



A{Po) = Ae(1—6), A(ps) = A{Pz) = k(1 + ). (28)

We obtain the following formula for the constant ¢

Ao(1— 8)cos
o — 0 0 (29)

(cos Po/2 — a sin e /2)2

Let us calculate a, V3, V2 for certain Yy for the case § = 0.05

1170 EES 0, a = 0, 1}31 = —“3407 "bﬁ = 340’

Yo=30°, a=0208, Yi=—4 =56 (30)
o =605, @ = 03773, = 30% = T30,

Yo =805 a=0841, Y= TI° .= 145"

Thus, if we assume § = 0.05, we may then employ formulas (11) and (23) to
study the temperatures of uniform bodies of revolution, whose region D lies
within the limits (27) indicated by formulas (30) for certain cases.

Example 3. If we change to elliptical coordinates (Ref. 6) in the p, 2
plane, we have

p=}LSh*CLSiDB, z=ych*acos§, 0K a<<oo, 0<§<“1‘ (31)

where y is the scale constant, and equation (10) assumes the following form

- 7 T 5 (32)

2w Jtw 1 2w 92w
+ = . ( ) =0 |
op? 022 u?(sh? a 4 sin2 p) \

If we assume the solution of (32) has the form
w = Yuhocos (1 4 aa) (1 + bB), (33)

where ¢, e;, Ag, a, b are constants, then according to formula (6), with
allowance for (31), we shall have
(1 -+ aa)? ; {1+ bB)*

b= hoka(@)ha(B), ()= e, M(f)= 1 —

(34)

The constants ¢, a, c;, b and the boundary values o, ap, B, B, may be
determined so that

7\411(0') =1+ Hi(a)a 7"2([3) =1 + HZ(B)’ (35)

where [l (a)| < 81, |Mp(B)| < 823 o1 < a < a3 By < B < Bas 81, 8 are suffi-
ciently small, positive numbers.

Let us perform certain computations.

For the function A; (a): for ¢ = 0.0876, a = 2.78, a; = 0.2, ay = 2.4
we have 81 = 0.099, A7 (0.2) = 1.052, x; (0.4) = 0.95, A; (0.6) = 0.978,
A1 (0.8) = 1,032, A1 (1) = 1.064, A (1.2) = 1.094, Al (1.4) = 1.096, A1 (1.6)
= 1.099, Ay (1.8) = 1.07, A7 (2) = 1.039, A; (2.2) = 0.992, A7 (2.4) = 0.944,
min p = p; = 4 sh a) sin B, max p = pp = u sh ap sin B, py: p; = 27.1.

* Translator's Note: sh denotes sinh; ch denotes cosh.



For the function A,(B) at the point B = B8;, which may be determined by

the equation
ctg Bo
B 2—Botg Po (36)

this function has a minimum. We may determine the constants ¢;, B3, B2 so
that Ao0(Bp =1 - 83, A2(B1) = A2(B2) = 1 + &5, where B < By < Bp. We
have: ¢) = (1 - 683) sin Bg (1 + bBg)~2, and for &, = 0.05
Bo=m/2, b=0, B = 1,14, P2 = 2,02,
Bo=1,32, b=0134, ¢ = 0,664,
By = 0922, P, = 1,793,

Po =1, b = 0,473, ¢y = 0,308, f1 = 0,63, P = 1,447,
f)o = 0,()., b= 1,3, 1 = 0,1()9, ﬁ1 == 0,3/}, fJ)z = 0,98,
B0 = 0,2, = 4,80, c1 = 0,0480, p1=0,107, 2 == 0,37.

These examples show that equality (13) is obtained, within an accuracy
which is satisfactory for practical applications, even by means of the
simplest functions w [see (14), (23), (33)]. Therefore, if formula (11)
is employed, the boundary conditions on the surface of the body V may be
satisfied for the region D of any complexity, provided that it lies within
the limits (17), (27) or (35). If the temperature on the surface of the
body is given in the form of the function g, which is a function of the
boundary curve of the region D -- contour K -- then the boundary condition
assumes the following form

P(E) + ¢(8) = wq. (37)

The boundary value problem (37) may be solved for the multiply-connected
region D, for which we must employ the well-known methods of solving the
planar problem of Dirichlet [for example, (Ref. 7 - 9)].
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